

Key features of bGamma

BrightSpec NV

25 October 2018 V. Osorio

SUMMARY

Unique features → feature not existing in any commercial software

Outstanding → remarkable implementation of this feature

Highlight → Feature that, as a result of its implementation, could position this product at the top of the selection list even when other similar products would have this feature realized as well.

Platform independent

Run seamlessly in any Operating system

MS Windows:

• XP, 7, 8 and 10.

- mac OS Mac
 Wide hardware support
 - X86 (32-bit) μProcessor
 - 64-bit μProcessor
 - ARM μProcessor

Platform independent

Generic software

- Multipurpose and generic software for gamma-ray
 - Analysis of ANY type of Gammaray spectra independently of the detector used for its measurements
 - Low-medium-high energy resolution detectors
 - BGO, CsI, NaI(TI), CeBr₃, SrI₂, LaBr₃
 - HPGe, Si(Li) and CdZnTI
 - All analysis parameters are at hand and saved as "model".
 - Models can be imported for quick spectrum analysis

MultiDocument

- Allows working with many spectra at same time
 - Can mix spectra being acquired (hardware control) with spectra from saved files
 - Use of docking and floating windows

Outstanding GUI

- Modern, comprehensive, powerful graphical user interface (GUI).
 - Nearly any analysis or calculation step is provided with visual feedback

Outstanding GUI

- Peaks and ROI results data at hand.
- Each spectrum plot with residuals and its individual report panel

Accurate calculations

- All... absolutely all and any calculated magnitude is reported with corresponding uncertainty value
- Co-variances are taking into account for uncertainty calculations

Manual or Visual operation

- Ability to insert/remove peaks and ROIs by several methods
 - Visually via GUI
 - By nuclide library

Automatic by mathematical algorithms

Manual or Visual operation

- Use of Multi-cursors
 - The use of "Spectroscopy-aware" cursors make easier the spectrum analysis and visual NID

Computational algorithms

- Large selection of computational algorithms, included in the standard version of the software
 - Continuum models
 - By entire spectrum or per individual peaks
 - Extensive ROI calculations
 - Peak search and marking
 - 7 peak search methods
 - · 4 peak marking and ROI identification algorithms
 - Three (3) peak fitting algorithms
 - Includes Bayesian peak fitting
- This wide range of choices warranties the success of the spectrum analysis from any type of detector, energy range and/or energy resolution

Computational algorithms

- Outstanding peak fitting and multiplet deconvolution
 - With visual feedback (residuals plot)
 - And Statistical qualifiers in the report (e.g. colored χ^2)

Computational algorithms

- Implements Bayesian peak fitting
 - Minimum input parameters
 - Does NOT rely on shape (FWHM) calibration

Import files

- Can open files from:
 - IAEA (*.spe)
 - Canberra, binary (*.chn)
 - NO need of Canberra VDM or run time libraries installation
 - Ortec (*chn)
 - ANSI N42.42
 - Including latest edition N42.42.2012
 - Generic text file

Reports

- bGamma produces colored, rich-formatted and aligned reports
- HTML-based reports

15 Oct 2018 11:17:17

Peak fitting results report

Method used:

Non-linear least squares

All uncertainties are reported at 1.0 sigma.

Peak label	Related ROI	Position Std.Dev. [chn]		Position Std.Dev. [keV]		FWHM Std.Dev. [chn]		FWHM Std.Dev. [keV]		FWHM Std.Dev. [%]		Area Std.Dev. [cnts]		Continuum Std.Dev. [cnts]		Fit χ^2 [aunits]	Identified nuclide (NID)
PA [46]	ROI-1	212.52	0.08	46.67	0.02	4.20	0.19	0.91	0.04	1.95	0.09	1570.08	81.73	2446.05	104.95	0.57	Pb-210 [46.54]
PA [63]	ROI-2	289.25	0.06	63.33	0.01	4.23	0.14	0.92	0.03	1.45	0.05	2389.78	92.91	2790.98	112.11	0.65	Th-234 [63.29]
PM [73]	ROI-3 (Multiplet)	332.99	0.10	72.82	0.02	4.07	0.22	0.88	0.05	1.21	0.07	1445.40	88.61	7188.45	269.77	0.36	Pb X-ray-Ka [72.87]
PM [75]		342.98	0.06	74.99	0.01	4.23	0.12	0.92	0.03	1.22	0.03	3060.16	102.57	7188.45	269.77	0.36	Pb-214 X-ray-Ka [74.81]
PM [77]		352.46	0.56	77.05	0.12	4.02	1.30	0.87	0.28	1.13	0.37	207.15	72.30	7188.45	269.77	0.36	Pb-214 X-ray-Ka [77.11]
PM [85]	ROI-4 (Multiplet)	387.91	0.12	84.75	0.03	6.01	0.25	1.30	0.05	1.54	0.06	2026.04	97.82	4131.07	167.07	0.46	Pb X-ray-Kß [84.86]
PM [88]		400.25	0.21	87.43	0.04	4.89	0.40	1.06	0.09	1.21	0.10	718.39	71.45	4131.07	167.07	0.46	Pb-214 X-ray-KB [87.35]
PA [93]	ROI-5	423.99	0.06	92.58	0.01	4.88	0.14	1.06	0.03	1.15	0.03	3017.33	100.59	2680.41	109.84	1.14	Th-234 [92.38]
PA [144]	ROI-6	658.61	0.38	143.53	0.08	4.48	0.89	0.97	0.19	0.68	0.13	311.92	67.62	2330.19	102.59	0.40	Ge-75 [139.68]
PA [185]	ROI-7	852.25	0.11	185.60	0.02	4.35	0.25	0.94	0.06	0.51	0.03	1168.76	77.24	2604.89	114.10	0.36	Ra-226 [186.21]
PA [238]	ROI-8	1095.49	0.35	238.47	0.08	4.70	0.81	1.02	0.18	0.43	0.07	336.93	63.97	2140.51	103.60	0.32	Pb-212 [238.63] Th232 natural
PA [351]	ROI-9	1615.83	1.26	351.63	0.27	8.27	2.24	1.80	0.49	0.51	0.14	168.16	57.36	1586.99	93.45	0.21	Pb-214 [351.93] U238 natural
PM [511]	ROI-10	2348.03	0.15	511.02	0.03	11.96	0.32	2.60	0.07	0.51	0.01	3015.46	96.05	1990.47	141.12	0.74	Annihilation
PA [609]	ROI-11	2798.66	0.62	609.22	0.14	6.31	1.44	1.37	0.31	0.23	0.05	188.83	47.25	1045.90	79.35	0.25	Bi-214 [609.32] U238 natural
PA [911]	ROI-12	4181.72	0.64	911.07	0.14	8.14	1.47	1.78	0.32	0.20	0.04	225.13	44.94	861.17	80.35	0.54	Ac-228 [911.20] Th232 natural
PM [969]	ROI-13	4446.17	0.79	968.86	0.17	5.73	1.74	1.25	0.38	0.13	0.04	99.72	34.22	407.92	32.00	0.27	Ac-228 [968.97] Th232 natural
PA [1120]	ROI-14	5137.35	0.67	1120.03	0.15	8.56	1.53	1.87	0.33	0.17	0.03	201.86	40.03	672.28	73.39	0.35	Bi-214 [1120.29] U238 natural
PA [1238]	ROI-15	5676.49	1.55	1238.07	0.34	7.87	3.58	1.72	0.78	0.14	0.06	73.72	36.67	780.67	81.46	0.26	Bi-214 [1238.12] U238 natural
PA [1461]	ROI-16	6693.02	0.10	1460.91	0.02	8.94	0.20	1.96	0.04	0.13	0.00	1904.11	58.98	243.16	46.80	1.27	K-40 [1460.82]
PM [1593]	ROI-17	7294.77	0.50	1593.01	0.11	8.98	1.03	1.97	0.23	0.12	0.01	216.10	29.93	229.94	37.20	0.33	Not identified
PA [1731]	ROI-18	7920.95	1.25	1730.60	0.27	11.55	2.87	2.54	0.63	0.15	0.04	93.75	26.03	258.99	50.87	0.36	Bi-214 [1729.60]
PA [1766]	ROI-19	8079.82	0.31	1765.53	0.07	9.46	0.64	2.08	0.14	0.12	0.01	385.51	32.06	239.78	48.95	0.50	Bi-214 [1764.49] U238 natural

Reports

- Reports contain colored and well formatted tables
 - Colors are used to flag statistically doubtful calculation results
- Dedicated reports for specific sections
- Reports can includes plots images (e.g. spectrum plot with fitting results)
- Report templates can be created, using HTML commands, for more specific or user-defined spectrum analysis reports
 - HTML markup is widely supported and easy translatable to other applications (e.g. MS Explorer)
 - No need to learn dedicated or specific scripting languages and/or commands
- Reports can be exported into PDF

Nuclide library

- Broader meaning of nuclide library
- bGamma includes the whole decay radiation data from 3386 nuclides
 - NuDat decay data files
 - Recommended and maintained by INDC and BNL (USA)
- Any radiation is always at hand
 - No need for getting out of the analysis to "search" for the correct nuclear radiation or edit the nuclear library file.
 - Spectrum analysis steps are fully reproducible, since it does not contain links to external nuclear data files
 - Provision of "fast radiation search", tagged isotopes or isotope radiations, etc.

Hardware control

- Within bGamma you can connect, set and control any BrightSpec hardware for data acquisition
- Provision of an auto-updated applet, according to connected hardware capabilities
 - Extensive counting preset modes
- Provision of a dockable digital oscilloscope for hardware troubleshooting

SUMMARY OF FEATURES

Brief summary of most important application features

Unique

Unique features

- OS-independent
 - The only software in the market that runs on MS Windows (XP, 7, 8 and 10), Linux and mac OS
 - With wide support of μProcessors:
 - X86, 64-bit and ARM
- Inclusion of Bayesian peak fitting algorithms
 - Allows the possibility to fit spectra with minimum input data (e.g. calibrations)
 - Mark/insert a peak and fit straight-away

Unique features

- Entire nuclear decay radiation data embedded into the application.
 - Fast access to any decay radiation
 - ALL decay radiations are quickly at hand
 - No need for external nuclear library files
 - Spectrum analysis goes smoother. No need for endless cycles of exiting application or spectrum analysis process to edit/search nuclide library for specific radiations.
 - No links to external files (e.g. nuclide library file) which can be missing and therefore impossible to recreate the spectrum analysis
- Every calculated magnitude is reported with its uncertainties
- Covariance inclusion on the uncertainties treatment
- Outstanding Graphical User Interface
 - Many features (see previous slides)
 - Possibility to view all calculated parameters and magnitudes in tables and most of them updated on "real time" even while data acquisition is performed

Outstanding feature

- Can analyze any gamma-ray spectrum. Independently of the detector used, energy resolution or energy range
- Easy but comprehensive methods for energy and shape calibrations, with provision of visual feedback
- Calculation of MDAs following ISO11929 standard (up-to latest revision), with clear results and recommendations

Highlighted features

- HTML-formatted reports
 - Including tables with colored cells for data results warnings
- Import of foreigner file formats, like Canberra CNF does not need any extra files or libraries to be installed
 - Imports N42.42 (up to latest edition)
- Simple and "automatically updated" window for hardware control
- Spectrum analysis parameters can be exported\imported as Model.
- Fats and intuitive operations within an outstanding GUI.
 - Peaks insert\delete, multi-cursor, nuclide search, etc.
 - Residuals plots, model parameters at hand, etc.