7000 Series Signal Source Analyzers

Crystals

KVG, NELFC, Magic XTAL, Morion, Greenray, Rakon France & UK, MtronPTI, Quarzcom, SiTime, Semtech, RFX, Taitien Electronics, Haichuang, Haijiang, Panda Nanjing

Time and Frequency Standard Research

METAS, PSI, CNES, European XFEL, NRAO, DESY, Pohang Accelerator, Observatoire Paris

RF and Microwave modules

Rockwell Collins, British Aerospace (BAE), Teledyne, Mitsubishi, Raytheon, Quovo, Custom MMIC, NEC, Peregrine, Cobham, Knowles, Broadcom, JRC, Aoptix, Elbit, ELDES, JPL, FEI, EYAL Microwave, ST Electronics, CETC China, TMY Taiwan

Communications

NOKIA, Eriksson, Aeroflex Malaysia, Vitesse Semicon, Tektronix, Spreadtrum China

Signal Source Analyzers

Covering frequency up to 7 / 26 / 40 GHz, direct and additive phase noise and amplitude noise measurement, transient analysis, short- and long-time frequency stability analysis, one-step VCO characterization, baseband FFT, spectral analysis. Internal and external references.

*Specifications Subject to Change

Mode	el	Description
Mode	el 7070	1 MHz to 7 GHz
Mode	el 7300	1 MHz to 26 GHz
Mode	el 7340	1 MHz to 40 GHz
Key fe	eatures	
• V	ery easy	operation: PC based GUI software, or remote control through LAN,
U	SB or GP	IB
• Si	ingle broa	adband input from 1 MHz to 7 / 26 / 40 GHz
• Lo	ow instru	iment noise floor (< -190 dBc/Hz)
• 0	ffset ran	ge: 0.01 Hz to 100 MHz
• Fl	exible in	ternal and external references
• B	uilt-in 3 i	ndependent tuning voltages (-5 to +22 V)
• B	uilt-in 2 i	ndependent DC supply voltages (0 to 15 V, 600 mA each)
• Ex	xternal 1	0 MHz reference input
• Ex	xternal tr	rigger input
		ht: 11 kg (24 lbs) and compact size, portable

Berkeley Nucleonics Corporation info@berkeleynucleonics.com | www.berkeleynucleonics.com 2955 Kerner Blvd, San Rafael, CA 94901 | 800-234-7858

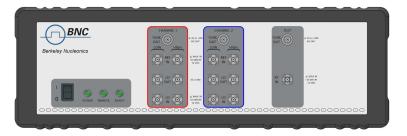
Signal Source Analyzers – Key Functions

Description

Key functions:

- Phase Noise Measurement
 - Absolute, residual / additive
 - CW, pulse, burst measurement modes
 - High-drift or slowly modulated
 - With internal or external references
- Amplitude Noise Measurement
 - Absolute
 - CW and Pulse measurement modes
 - High-drift or slowly modulated
 - Always with internal references
- Transient Measurement (Frequency, Phase, Amplitude vs Time)
- Short- and Long-Term Frequency Stability / Allan Deviation Measurement: 1 s ... 10 days
- Complete One-Step VCO Characterization (Tuning, Tuning Sensitivity, Pushing, Power, Harmonics, Current, Phase Noise)
- Baseband FFT Analyzer (base-band 1 Hz to 100 MHz)
- Spectral Analysis (5 MHz to 7 / 20 GHz)

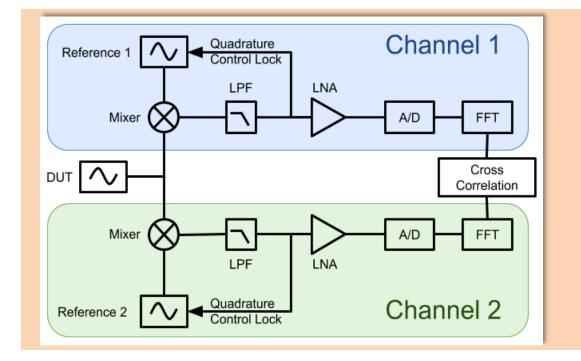
Signal Source Analyzers – Options



Option	Description	Supported Models
Option LN	Enhance phase noise test sensitivity (HW)	All
Option PULSE	Add pulsed measurement capability (SW)	All
Option BURST	Burst mode phase noise measurement (SW)	All
Option AM	Add amplitude noise measurement capability (SW)	All
Option APN	Additive phase noise measurement (SW)	All
Option TRAN	Transient measurement (SW)	All
Option TSTAB	Time stability analysis (SW)	All
Option LO	Access to two internal references (HW)	All
Option VCO	One-step VCO characterization (SW)	All
Option SPEC	Spectrum Monitoring (SW)	All

Signal Source Analyzers – Front and Rear Panels

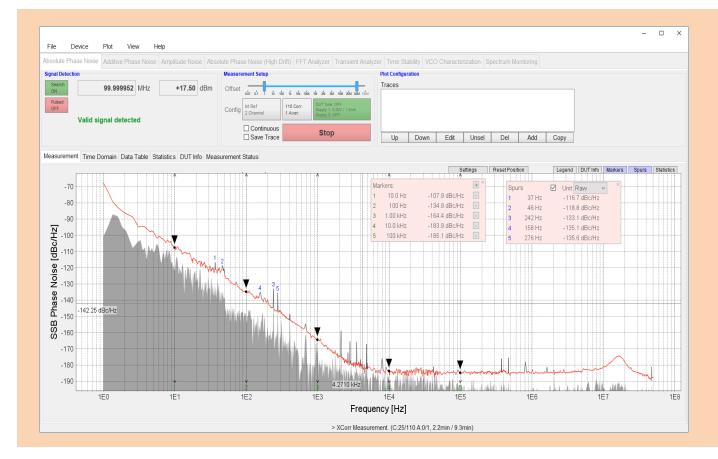
Front


DUT in (-15 to +23 dBm) DUT tuning voltage out (-5 to +22 V) Ext. ref. in (up to +23 dBm) Ext. ref. tuning voltage out (-5 to 22 V)

Rear

Baseband in 1, 2 Precision power supply voltage out 1, 2 Ext. trigger in 10 MHz ref. in LAN, USB, GPIB DC Power in

Fundamental Concept (Phase Noise Testing)

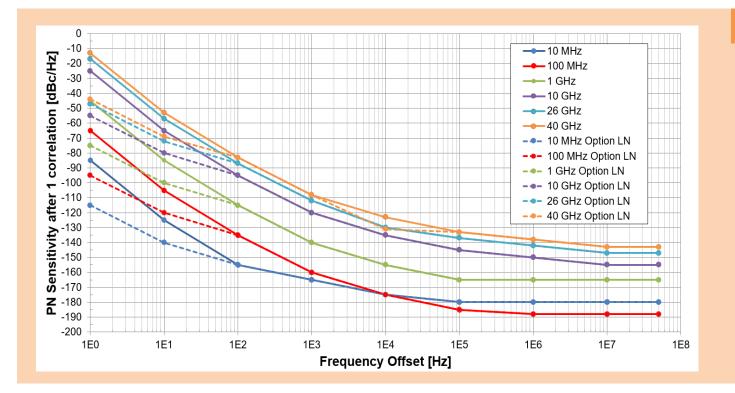

Description

- References can be internal or external
- Multiple cross-correlations overcome instrument-internal thermal noise and reference (uncorrelated) noise
- Except for high-drifting DUT, we chose to use «Zero-IF» front-end technique
- «Direct Sampling» for high-drifting DUTs
- «Heterodyne Zero-IF» to further increase measurement sensitivity especially in close-in offset area

7/22/19

Absolute Phase Noise Measurement – Standard and LN mode

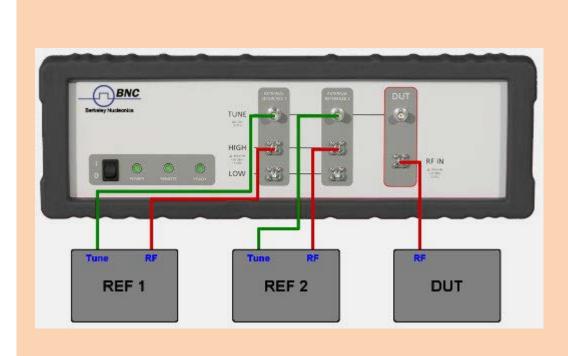
Description


- All on one GUI page
- Automatic DUT frequency search
- Frequency counter and power meter
- Adjustment of offset range, resolution, # of CC and AVG, etc.
- In the "Statistics" tab: jitter, Allen Deviation, etc.
- Spurious on / off

*Specifications Subject to Change

Berkeley Nucleonics Corporation info@berkeleynucleonics.com | www.berkeleynucleonics.com 2955 Kerner Blvd, San Rafael, CA 94901 | 800-234-7858

Absolute Phase Noise Measurement – Sensitivity Levels

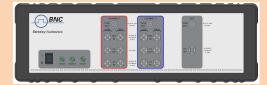

- Measurements (left) done with 1 cross-correlation
- When using internal references, LN mode improves phase noise test sensitivity especially in the offset range < 1 kHz.
- Regardless with internal / external references, multiple cross-correlation further improves the measurement sensitivity:
 - 10 correlations: ~ 5 dB better
 - 100 correlations: ~ 10 dB better
 - Limit: system noise floor

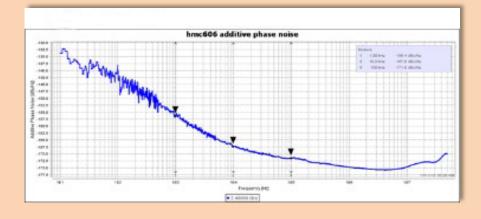
Absolute Phase Noise Measurement – With External References

Berkeley Nucleonics Corporation

info@berkeleynucleonics.com | www.berkeleynucleonics.com 2955 Kerner Blvd, San Rafael, CA 94901 | 800-234-7858

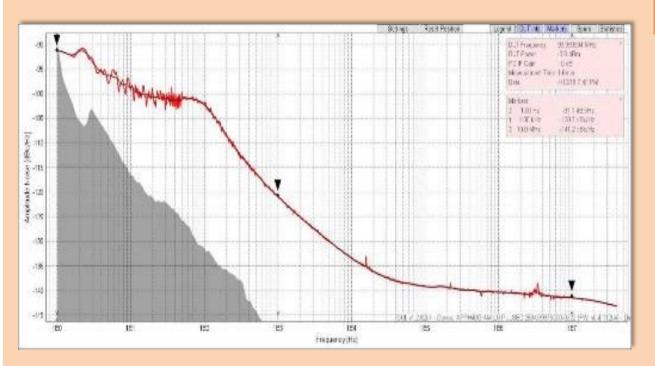
Description


- The internal references, since they need to be adjustable in a wide frequency range, regardless whether it is in standard or LN mode, have significant influence on phase noise measurement sensitivity. Measuring DUTs with extremely low phase noise would then require a lot of cross-correlation and thus time-consuming.
- Using external references can reduce the number of crosscorrelations, and therefore, shorten the measurement time. Choice of external references:
 - frequency-tunable (voltage control input)
 - frequency tuning ranges need to overlap with DUT frequency
 - phase noise of refs can be 10...15 dB worse than DUT's.
- Both single and dual ref channels possible.



Residual Phase Noise Measurement

- Measuring additive / residual phase noise of non-oscillating DUTs (LNA, mixer, multiplier / divisor, etc.) with extremely low instrument noise floor
- Using external signal source or internal reference source (option LO)



- Choice of accessories:
 - Oscillation source: Phase noise non-critical, but similar or better amplitude noise than the expected additive phase noise of the DUT.
 - Splitter: Good isolation, ideally non-resistive low insertion loss
 - Phase shifter: min. 180° phase shift at target frequency
- Power balancing
 - REF IN ports need at least 13 dBm, RF (DUT) port at least 3 dBm
 - Dual-channel: REF IN power levels should be similar

Amplitude Noise

Description

- Frequency range: up to 7 / 18 / 18 GHz
- Input power range:
 - 1 MHz to 10 GHz: -20...+20 dBm
 - 10 GHz to 18 GHz: -10...+20 dBm
- Offset Analysis Range: 0.1 Hz to 40 MHz
- No PLL, direct sampling
- Cross-Correlation further reduces measurement noise floor

Phase and Amplitude Noise Measurement in Pulse & Burst Mode

)evice ase Nois	Plot Additive	View		Help	nplitude	. Noi	se Abs	olute Pha	ase	Noise	(Hiah	Drift)	FFT A	nalva	ver Tr	ansient	Analyze	er Tir	ne Stabi	lity VCO	Cha	racterizati	on S	pectrur	m Moni	toring	1		
Detect		71001170				pintoran		00 7400			ent Setu		Dinity				anoion	/ undig 20		10 0100	Plot Conf				poorda			,		
arch											int Setu	φ									Traces	gura	uon							
i cii		3000.571	682	MHz			na	dBm	Offse	t	1 0.1	4	10 100	ń.	10k	olak 114	2M (ia 10ia	20м во	1 100M	Puls	ed			3	.00057	1650	GHz	04/24/1	9 12:03
sed	PRF	9.	965	(Hz	Dut		9.74	%		Int	Ref		100 C	orr	DUT	Tune: OFI					⊠ cw					.00057			04/24/1	
					Сус	le			Config		Channel		1 Ave		Supp Supp	ly 1: OFF ly 2: OFF														
	Valid	signal det	ected	1							Contir Save					Me	asure)			Up		Down	Ed	lit	Unsel		Del	Add	Copy
										-	0410					_	_	_			00		Down	Lu		Uniser		Der	nuu	000
ureme	nt Time	Domain D	ata Ti	able S	Statist	ics D	UT In	nfo Mea	suremen	t Sta	atus																			
																				ettings	Reset	Posit	tion		Legend	DUT	Info	Markers	Spurs	Statist
-65																									_				l	
-70																										e Rate: e Width		959 kHz		
-75																										Cycle:				
-80																										-,			 	
-85																														
-90														ļ	1															
-95			~~	\sim					2						٨.															
.	ļ				~	~~~	~~	~~~	M					`	Π.															
-85 -90 -95 -100 -105 -110 -115 -120									5	~~~	\sim	~	_	γ.	11			- A 1											_	
-110														~		~	\sim	JV	4						_			N		
-115																						~~								
-120																										\sim	~			~
-125																														
-135																														
-140				1			×						1		1														1	
-145		ulsed													Ť															
-150		. V V										1			1														1	
	1E2						-								1E	3												1	Ē4	
														0	ffse	t Fre	quer	cy (H	z]											
															> 1	logeure	mont c	topped.												

Description

PULSED Absolute and additive phase noise

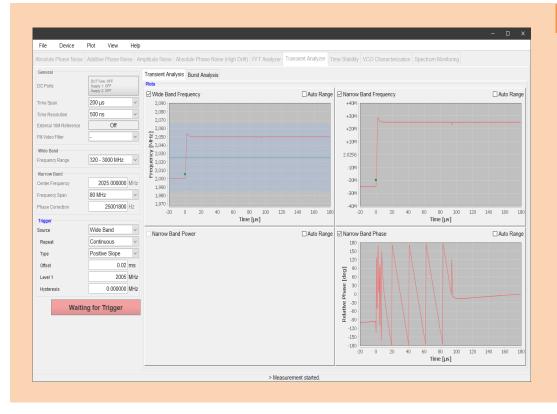
- Detects pulses / pulse trains with a fast power detector
- Can lock to periodic pulsed signals and (aperiodic) pulse trains
- Automatic detection of duty cycle and pulse repetition frequency (PRF)

PULSED Amplitude noise

- Pulsed characteristic can be analyzed directly with I/Q demodulation
- Measured digitally

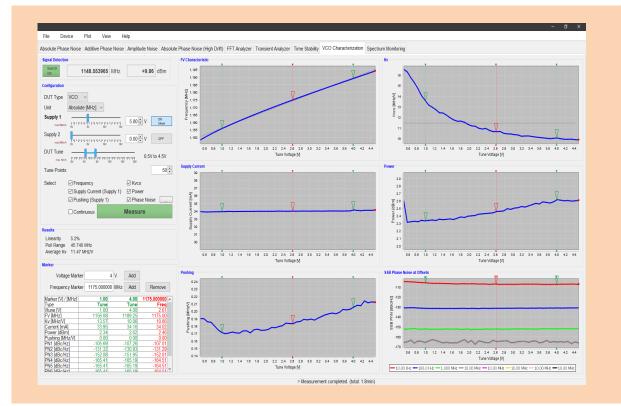
BURST mode

- Phase noise of individual pulses can be observed
- User selectable single pulse or pulse bursts (packet of pulses)



Performing Correct Phase and Amplitude Noise Measurements

- 1. Reduce environmental influences
 - High Use high quality, possibly short coaxial cables for RF and control/tuning signals and shielded wires for DC power supply
 - Use precision DC power supplies or batteries to reduce influence from AC power grid (50 or 60 Hz) and from switching power supplies
 - Minimize mechanical disturbances (vibrations, movement of setup during measurement, loud sounds)
 - Reduce or shield from noise and interference sources (mobile phones, other DUTs, unrelated wiring/cords, computers)
 - Shielding can help to reduce: crosstalk, temperature variation, mechanical vibration
- 2. Use 7000 series original AC power adapter
- 3. Setup in general
 - Fixed setup so it can't move around
 - Sufficiently warming up of 7000 series, DUTs and other components
- 4. External references
 - Ideally use separate power supplies for each channel
 - Physically separate references (to reduce channel-to-channel crosstalk)


Transient Analysis

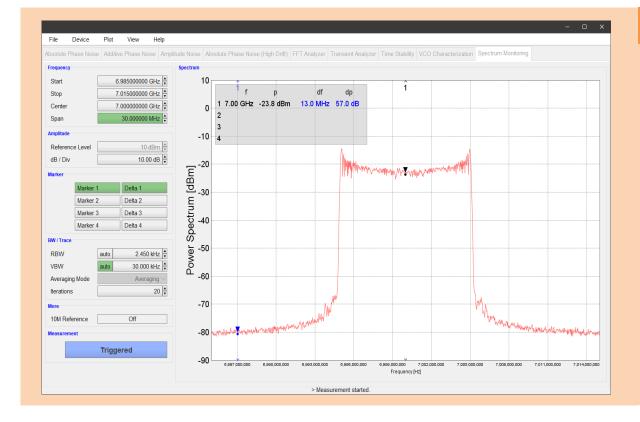
- Look at short term behavior in time domain
- Wideband and narrowband mode (200 kHz up to 30 GHz span)
- Excellent time resolution (down to 8 ns)
- Frequency, Phase, Amplitude vs time
- Burst mode phase noise
- Trigger mode can be set to internal (self-detecting), external (TRIG IN) or free running
- 4 display fields (max 3 pictures displayable)
 - Wide band freq vs time
 - Narrow band freq vs time
 - Amplitude/Power vs time
 - Phase vs. time or phase noise


VCO Characterization

- One-step, full characterization of both VCO- (wide frequency tuning range) and VCXO-style (narrow frequency tuning range) DUTs
- 6 display fields:
 - Freq vs. tuning voltage
 - Kvco vs tuning voltage
 - Supply current vs tuning voltage
 - Power and harmonics vs tuning voltage
 - Pushing vs tuning voltage
 - Phase noise vs. tuning voltage
- Can control various supply and tuning voltages in sweep mode (outputs available at front and rear)

Long-Time Frequency Stability Analysis

Description


- Testing time from 1 s to 10 days
- Frequency drift over time
- Allan Deviation (ADEV) over time

*Specifications Subject to Change

Berkeley Nucleonics Corporation info@berkeleynucleonics.com | www.berkeleynucleonics.com 2955 Kerner Blvd, San Rafael, CA 94901 | 800-234-7858

Spectral Analysis

- 5 MHz to 7 / 20 GHz
- Uncertainty: +/- 3 dB absolute; +/- 1 dB relative
- Noise floor: about -90 dBm/Hz

Traceable Calibration Procedure

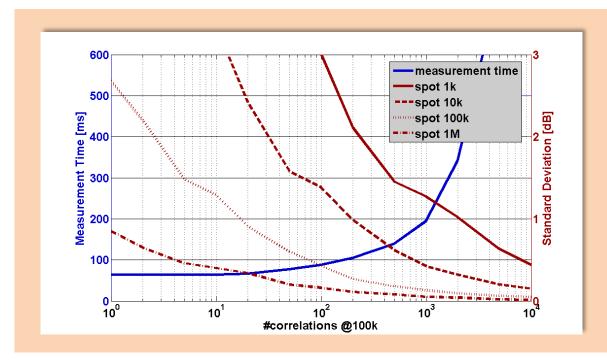
Collipration Certificate (Factory Standard Calibration) This certifis that babw nentioned product was alightated to meet product specifications ago the corresponding berkeley Nucleonics Corporation data sheet, using the applicable calibration procedures. Our calibration laboratory follows ISO 17028 processes. The measuring instruments are trial was aligned to the constrained or international standards. Manufacturer: Berkeley Nucleonics Corporation Product: Model 855-M-04-UN Serial number: Definition of the constrained of the constrained or international international standards. Product: D4.337 Options intailed UN Product: 24 mosts Encommended calibration cycle: 24 mosts Environmental conditions: 23°C 8.3°C Yeng Yong Yong Yong Yong Yong Yong Yong Yo
procedures. Dur calibration laboratory follows ISO 17025 processes. The measuring instruments are true to hardnal or international standards. Manufacturer: Berkeley Nucleonics Corporation Product: Model BSS-M-04-LN Serial number: 04.137 Options installed LN Recommended calibration cycle: 24 months: Emperature 23°C 83°C
Our calibration laboratory (follow ISO 17025 processes. The measuring instruments are transminiational or international standards. Manufacture: Berkeley Nucleonics Corporation Mondatorers: Model 85-5M-04-LN Schal number: Controls Firmware version: 0.4.137 Options installed UK Recommende calibration cycle: 24 months Empirature: 23% £ 3°C
Manufacturer: Berkeley Nucleonics Corporation Product: Model 855-M-00-4-LN Serial number: 6-137 Firmware version: 0.4137 Options initialed LN Recommended calibration cycle: 24 months:
Product: Model 855-M-40-4-LN Serial number: 6-1 Firmware version: 0-4.137 Options installed LN Recommended calibration cycle: 24 module: Environmendal conditions: Cemperature Environmenter 23°C ± 3°C
Product: Model 855-M-40-4-LN Serial number: 6-1 Firmware version: 0-4.137 Options installed LN Recommended calibration cycle: 24 module: Environmendal conditions: Cemperature Environmenter 23°C ± 3°C
Serial number: 0.4.137 Firmware version: 0.4.137 Options infailed LIV Recommended calibration cycle: 24 mosts: Environmental conditions: Temperature 23°C ± 3°C
Immune version: 0.4.137 Options installed LN Recommende calibration cycle: 24 moster Environmental conditions: Cemperature Environmental conditions: 23°C ± 3°C
Options installed UN Recommended calibration cycle: 24 months: Environmental conditions: Temperature 23°C ± 3°C
Recommended calibration cycle: 24 months Environmental conditions: Temperature
Environmental conditions: Temperature 23°C ± 3°C
Temperature 23°C ± 3°C
Model Name Description fail No RAS NIP-23 Average optication fail 10555 Ladybug 1859401, Average optications 101555 Ladybug 1859401, Average optications 177431 Anapico APP12005 Sk all source analyzer Dato Phylop Sk all source analyzer Dato Phylop Sk all source analyzer Dato Phylop Sk all source analyzer
Quality Assurance Manager, BNC
2955 Kerner Blvd. • San Rafael, CA 94901 • Tel (415) 453 9955 • Fax (415) 453 9956 • www.berkeleynucleon

Description

- Traceable Phase & Amplitude Noise Standard to ±0.5 dB, delivered with calibration certificate of accredited metrological testing lab.
- APPH built-in user calibration procedures
- Used at meteorological lab, or by APPH end customer to quickly calibrate the phase and amplitude measurement correctness

Model Description

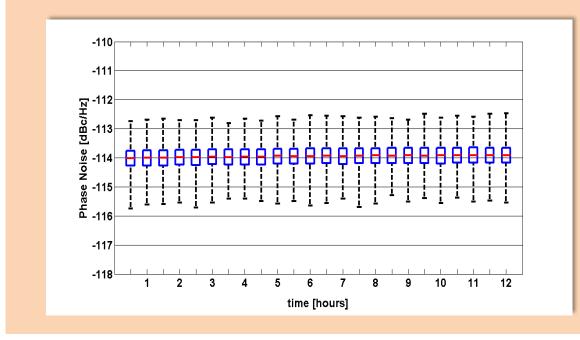
APNS Traceable Phase & Amplitude Noise Standard



Competitive Comparison

Parameters	E	3NC 7000 Se	eries	R&S I	FSWP	Keysight E5052B/E5053A
Frequency Range	1 MH:	z to 7 / 26 /	40 GHz	1 MHz to 8 /	26 / 50 GHz	10 MHz to 7 / 26 GHz
Offset Range	0.0	1 Hz to 100	MHz	0.01 Hz to	1000 MHz	1 Hz to 100 MHz
PhN Sensitivity dBc/Hz	Std	LN	EXT	Option B60	Option B61	
@100 MHz, 10 Hz offset	-105	-120	-130	-108	-117	-111
@100 MHz, 10 kHz offset	-175	-175	-178	-170	-170	-164
@1 GHz, 10 Hz offset	-85	-100	-110	-88	-97	-91
@1 GHz, 10 kHz offset	-155	-155	-170	-166	-166	-146
Measurement Modes						
PhN / AM noise / pulsed / pulse trains		Y/Y/Y/Y	(Y/Y,	/ Y / Y	Y / Y / N / N
Supporting ext. ref.		Y		٦	N	Ν
Residual phase noise CW / pulsed		Y / Y		Y,	/γ	N / N
Burst Mode phase & amplitude noise		Y / Y		N,	/ N	N / N
VCO Testing		Y		Y	ſ	Y
Transient Analyzer		Y		Y	ſ	Y
Time Stability (ADEV)		Y		1	N	Ν
Spectrum Analysis		Y		Y	(Y
Integrated Supplies / Tuning Voltage		Y / Y		Υ,	/γ	Y / Y
Instrument Weight		10 kg		24	kg	25 kg
Power Consumption		70		30	00	500

ATE Interfaces



Description

- Supports LAN, USB, GPIB
- SCPI command control
- Throughput optimized solution: <u>measurement speed <200 ms</u> with excellent accuracy and repeatability
- Application Programming Interface for various languages (C, C++, Java, VBA, Matlab, Python, .NET library)

Excellent Repeatability

- Plot shows about 250'000 measurements over 12 hours with same DUT
- Fast and robust measurement results
- Excellent repeatability

Applications

tion) testing O, PLL, YIG, DRO, OCXO er, pre-scaler, phase coherence , tability	Electronics manufacturers, semiconductor factories, design houses R&D Active RF component manufacturer, semiconductor R&D,
er, pre-scaler, phase coherence ,	
	Active RF component manufacturer, semiconductor R&D,
	synthesizer R&D, accelerator time synchronization
g, crystal startup behavior, modulation de phase noise analysis	Crystal manufacturer, synthesizer manufacturer
stability analysis	
VCO and other tuneable oscillating	VCO manufacturer
	· · ·